



Carbohydrate Research 259 (1994) 59-65

# The structure of the O-specific polysaccharide of Salmonella arizonae O21 (Arizona 22) containing N-acetylneuraminic acid

Evgeny V. Vinogradov <sup>a,1</sup>, Yuriy A. Knirel <sup>a,\*</sup>, Alexander S. Shashkov <sup>a</sup>, Nikolay A. Paramonov <sup>a</sup>, Nikolay K. Kochetkov <sup>a</sup>, Evgeny S. Stanislavsky <sup>b</sup>, Elena V. Kholodkova <sup>b</sup>

(Received April 20th, 1993; accepted January 6th, 1994)

### Abstract

The O-specific polysaccharide of *S. arizonae* O21 was found to contain 2-acetamido-2-deoxy-D-glucose, 2-acetamidino-2,6-dideoxy-L-galactose, *N*-acetylneuraminic acid, and *O*-acetyl groups. On the basis of <sup>1</sup>H and <sup>13</sup>C NMR studies of the intact and *O*-deacetylated polysaccharide and oligosaccharide fragments obtained by solvolysis with anhydrous hydrogen fluoride, partial methanolysis and partial hydrolysis, it was concluded that the O-specific polysaccharide has the following structure:

→ 3)-
$$\alpha$$
-L-Fuc  $p$ N-(1 → 3)- $\beta$ -D-Glc  $p$ NAc-(1 → 7)- $\alpha$ -Neu  $p$ 5Ac-(2 →  $\frac{2}{3}$  CH<sub>3</sub>C=NH ~ 70% OAc

#### 1. Introduction

The O-antigens of Salmonella arizonae are neutral or acidic polysaccharides containing various amino sugars (ref 1 and refs cited therein). In continuation of

<sup>&</sup>lt;sup>a</sup> N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 117913, Russian Federation

<sup>&</sup>lt;sup>b</sup> I.I. Mechnikov Scientfic Research Institute of Vaccines and Sera, Mechnikov Lane 5a, Moscow 103064, Russian Federation

<sup>\*</sup> Corresponding author.

<sup>&</sup>lt;sup>1</sup> Present address: M.M. Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117871 Moscow, Russian Federation.

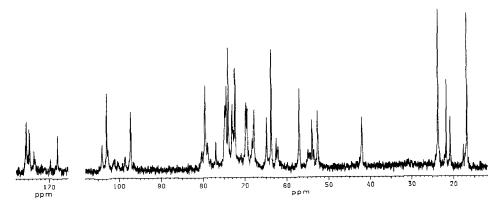



Fig. 1. 75-MHz <sup>13</sup>C NMR spectrum of the O-specific polysaccharide (PS-I).

our studies of the O-specific polysaccharides of this species, we now describe the structural determination of a new acidic O-antigen of S. arizonae O21 (Arizona 22) which contains N-acetylneuraminic acid and 2-acetamidino-2,6-dideoxy-L-galactose. A part of this work has been published as a preliminary communication [2].

## 2. Results and discussion

An acidic polysaccharide (PS-I) was obtained by mild acid degradation of the lipopolysaccharide isolated from dry bacterial cells of *S. arizonae* O21 by phenolwater extraction [3], and purified by anion-exchange chromatography on DEAE-Toyopearl 650M. Sugar analysis of PS-I revealed the presence of 2-amino-2-deoxy-D-glucose, 2-amino-2,6-dideoxy-L-galactose (L-FucN), and neuraminic acid.

The <sup>13</sup>C NMR spectrum of PS-I (Fig. 1) contained, inter alia, the characteristic signals for C-1 of GlcN and FucN at 97.2 and 102.9 ppm, C-2 of Neu at 104.1 ppm (the APT experiment revealed no proton attached to this carbon), C-6 (Me) of FucN at 16.7 ppm, C-3 (CH<sub>2</sub>) of Neu at 42.0 ppm, C-2 of GlcN and FucN and C-5 of Neu carrying nitrogen at 52.6, 53.9, and 57.0 ppm, N-acetyl groups (Me at 23.7 ppm), O-acetyl group (Me at 21.7 ppm), and N-acetimidoyl group (Me at 20.7, C=N at 168.0 and 169.7 ppm). The spectrum appeared complex, most probably because of nonstoichiometric O-acetylation, existence of the N-acetimidoyl group in the E and Z forms (cf. the published data [4]), and the presence of some contaminants.

Treatment of PS-I with 0.1 M hydrogen chloride in methanol resulted in removal of the O-acetyl group but did not affect the N-acetimidoyl group. The <sup>13</sup>C NMR spectrum of PS-II thus obtained was, however, almost as complex as that of PS-I.

Solvolysis of PS-I with anhydrous hydrogen fluoride at 20°C cleaved selectively the glycosidic linkages of FucN and Neu to give the disaccharide 1 containing

Table 1 <sup>13</sup>C NMR chemical shifts (δ in ppm) <sup>a</sup>

| Compound     | C-1         | C-2         | C-3      | C-4           | C-5  | C-6  | C-7  | C-8  | C-9  |
|--------------|-------------|-------------|----------|---------------|------|------|------|------|------|
| 2-Acetamidin | o-2,6-dideo | oxygalactos | e (Fucl  | N)            |      |      |      |      |      |
|              |             |             |          |               |      |      |      |      |      |
|              |             |             | $CH_3C=$ |               |      |      |      |      |      |
| PS-I         | 97.2        | 52.6        | 74.5     | 73.0          | 67.8 | 16.7 |      |      |      |
| PS-II        | 97.8        | 52.1        | 74.5     | 72.7          | 67.6 | 16.5 |      |      |      |
| 2            | 96.8        | 54.7        | 68.9     | 72.1          | 68.1 | 16.4 |      |      |      |
| 3            | 97.2        | 54.5        | 69.4     | 72.6          | 68.5 | 16.8 |      |      |      |
|              | 97.5        |             |          |               |      |      |      |      |      |
| 4            | 96.6        | 54.7        | 68.4     | 71.7          | 67.6 | 16.0 |      |      |      |
| 2-Acetamido- | 2-deoxyglu  | cose (GlcN  | JAc)     |               |      |      |      |      |      |
| PS-I b       | 102.9       | 57.0        | 79.8     | 69.7          | 74.8 | 64.8 |      |      |      |
|              | 102.9       | 57.0        | 79.8     | 69.7          | 77.0 | 62.5 |      |      |      |
| PS-II        | 103.0       | 56.5        | 80.4     | 69.5          | 76.6 | 61.9 |      |      |      |
| 1            | 103.7       | 56.9        | 74.9     | 71.5          | 77.0 | 62.7 |      |      |      |
| 2            | 99.3        | 54.8        | 72.4     | 71.2          | 72.9 | 61.8 |      |      |      |
| 3 α          | 92.6        | 55.5        | 77.5     | 70.0          | 73.2 | 62.3 |      |      |      |
| β            | 96.7        | 58.2        | 80.1     | 70.0          | 77.0 | 62.3 |      |      |      |
| 4            | 102.4       | 56.7        | 79.2     | 69.3          | 76.3 | 61.8 |      |      |      |
| N-Acetylneur | aminic aci  | d (Neu5Ac   | )        |               |      |      |      |      |      |
| PS-I         | С           | 104.1       | 42.0     | 72.4          | 53.9 | 74.0 | 79.6 | 66.4 | 63.7 |
| PS-II        | c           | d           | 41.3     | 72.4          | 53.8 | 73.1 | 79.7 | 66.8 | 63.3 |
| 1            | 173.1       | 96.4        | 35.7     | 66.8          | 51.2 | 77.2 | 72.3 | 71.5 | 61.5 |
| 4 e          | 176.4       | 97.0        | 39.9     | 6 <b>7</b> .3 | 53.7 | 70.0 | 79.1 | 72.3 | 63.3 |

<sup>&</sup>lt;sup>a</sup> Additional signals: N- and O-acetyl groups at 23.1-23.9 and 21.7 ppm (Me), respectively, 173.7-176.5 ppm (CO); N-acetimidoyl group at 19.9-20.7 ppm (Me), 167.0-168.0 and 169.7 ppm (C=N); OMe in 2 at 56.4 ppm.

N-acetyl-2,8-anhydroneuraminic acid. Structural elucidation of 1 using methylation analysis and <sup>1</sup>H NMR spectroscopy, including 2D shift-correlated (COSY) and 1D NOE spectroscopy, has been already described [2] and the <sup>13</sup>C NMR data of 1, which were interpreted with the aid of heteronuclear <sup>13</sup>C/<sup>1</sup>H shift-correlated (COSY) spectroscopy, are given in Table 1. Since the N-acetimidoyl group is known [4] to be stable towards anhydrous hydrogen fluoride, the presence in 1 of two N-acetylated amino sugars (GlcNAc and Neu5Ac) indicated that the N-acetimidoyl group was attached to the third amino sugar, namely to FucN.

$$\beta$$
-D-Glc  $p$  NAc- $(1 \rightarrow 7)$ -2,8anhNeu  $p$ 5Ac

Methanolysis of PS-I in the presence of 0.5 M hydrogen chloride led to the methyl bioside 2 isolated, together with methyl 2-acetamido-2-deoxy- $\alpha$ -D-gluco-

b The data for the O-acetylated unit are listed first.

<sup>&</sup>lt;sup>c</sup> The signal lay in the region 173.7–175.6 ppm.

d The signal was not found.

<sup>&</sup>lt;sup>e</sup> The data for the predominant  $\beta$  anomer.

pyranoside and methyl (methyl 5-acetamido-3,5-dideoxy-D-glycero-D-galacto-non-ulopyranosidonate) [5], by HPLC on reversed-phase C18. Partial hydrolysis of the lipopolysaccharide with 0.1 M trifluoroacetic acid afforded a mixture of products from which the disaccharide 3 and the major oligosaccharide 4 were isolated by HPLC on the same phase. The structures of 2 and 3 were established on the basis of their <sup>13</sup>C NMR spectra (Table 1), which were interpreted using the chemical shifts for methyl 2-acetamidino-2,6-dideoxy-L-galactopyranoside [6], the bioside  $\alpha$ -L-Fuc p NAc- $(1 \rightarrow 3)$ - $\beta$ -D-Glc p NAc- $(1 \rightarrow 2)$ -Gro [7], and the data on glycosylation effects [8]. One may conclude from the structures of 2 and 3 that the FucN residue was  $\alpha$  and linked to the GlcN residue at position 3.

$$\alpha$$
-L-Fuc  $p$ N-(1  $\rightarrow$  3)- $\alpha$ -D-Glc  $p$ NAc-(1  $\rightarrow$  OMe
$$\begin{array}{c|c}
2 \\
\text{CH}_3\text{C=NH}
\end{array}$$
2
$$\alpha$$
-L-Fuc  $p$ N-(1  $\rightarrow$  3)-D-Glc  $p$ NAc
$$\begin{array}{c|c}
2 \\
\text{CH}_3\text{C=NH}
\end{array}$$
3
$$\alpha$$
-L-Fuc  $p$ N-(1  $\rightarrow$  3)- $\beta$ -D-Glc  $p$ NAc-(1  $\rightarrow$  7)- $\beta$ -Neu  $p$ 5Ac
$$\begin{array}{c|c}
2 \\
\text{CH}_3\text{C=NH}
\end{array}$$

4

The  $^1$ H NMR spectrum of 4 was completely assigned by 2D COSY and relayed coherence transfer COSY (COSYRCT) (Table 2). The coupling constants  $J_{1,2}$  4 and 8.5 Hz indicated that the FucN and GlcN residues were glycosidically linked and had the  $\alpha$  and  $\beta$  configuration, respectively. The reducing Neu residue existed predominantly as the  $\beta$  anomer ( $\delta_{\text{H-3}e}$  2.11 ppm, cf. the published data [5]) with a small proportion of the  $\alpha$  anomer ( $\delta_{\text{H-3}e}$  2.59 ppm, the data are not shown in Table 2). Linkage and sequence analysis of 4 was carried out with the help of 1D NOE spectroscopy. On preirradiation of H-1 of the FucN residue, an interresidue NOE was observed on H-3 of the GlcN residue. Preirradiation of H-1 of the GlcN residue caused an interresidue NOE on H-7 of the Neu residue. The structure of 4 thus established was confirmed independently by the  $^{13}$ C NMR spectrum, which was assigned using heteronuclear  $^{13}$ C/ $^{1}$ H shift-correlated (COSY) spectroscopy (Table 1) and accorded with the structures of the disaccharides 1–3.

Therefore, 4 represented a trisaccharide repeating unit of PS-II, which resulted from selective cleavage of the glycosidic linkage of Neu.

Comparison of the <sup>13</sup>C NMR spectra of 4 and PS-II (Table 1) revealed the displacements of the signals for C-3 and C-2 of FucN from 68.4 and 54.7 ppm to

| <sup>1</sup> H NMR data for trisaccharide 4 (δ in ppm, <sup>3</sup> J <sub>H,H</sub> in Hz) |                               |                                     |                                      |                     |                       |               |                |              |  |  |
|---------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|--------------------------------------|---------------------|-----------------------|---------------|----------------|--------------|--|--|
| H-1                                                                                         | H-2                           | H-3                                 | H-4                                  | H-5                 | H-6                   | H-7           | H-8            | H-9          |  |  |
| 2-Acetan                                                                                    | nidino-2,6-di                 | deoxygalacto                        | se (FucN<br> <br>CH <sub>3</sub> C=N |                     |                       |               |                |              |  |  |
|                                                                                             | 3.77<br>J <sub>2,3</sub> 10.5 |                                     | $3.78$ $J_{4,5} < 1$                 | 4.38                | 1.12                  |               |                |              |  |  |
| 2-Acetan                                                                                    | nido-2-deoxy                  | glucose (Glcl                       | VAc)                                 |                     |                       |               |                |              |  |  |
| 4.50                                                                                        | 3.80                          | 3.56                                | 3.44                                 | 3.44                | 3.93<br>3.67          |               |                |              |  |  |
| $J_{1,2}$ 8.5                                                                               | $J_{2,3}$ 11.5                |                                     |                                      |                     | $J_{6a,6b}$ 11.5      |               |                |              |  |  |
| N-Acetyl                                                                                    | neuraminic                    | acid (Neu5Ac                        | ;) a                                 |                     |                       |               |                |              |  |  |
| ·                                                                                           |                               | 1.77 <sup>b</sup> 2.11 <sup>c</sup> | 4.18                                 | 3.77                | 4.29                  | 3.76          | 3.69           | 3.69<br>3.38 |  |  |
|                                                                                             |                               | $J_{3a,4}$ 11.5 $J_{3a,3e}$ 12      | $J_{3e,4}$ 5                         | J <sub>4,5</sub> 10 | J <sub>5,6</sub> 10.5 | $J_{6,7} < 1$ | $J_{9a,9b}$ 12 |              |  |  |

Table 2 <sup>1</sup>H NMR data for trisaccharide 4 (δ in ppm, <sup>3</sup>J<sub>HH</sub> in Hz)

74.5 and 52.1 ppm, respectively. These shifts are characteristic for  $\alpha$ - and  $\beta$ -effects of glycosylation [8] and indicated that FucN in PS-II is substituted at position 3. The chemical shift for C-6 of Neu (73.1 and 74.0 ppm in PS-II and PS-I, respectively) was close to that (73.8-74.0 ppm) for methyl 5-acetamido-3,5-dideoxy-D-glycero- $\alpha$ -D-galacto-nonulopyranosidonic acid and differed from that (71.2-71.4 ppm) for the corresponding  $\beta$  anomer [5]; hence, the Neu residue in the polysaccharides is  $\alpha$ -linked.

For GlcN in the <sup>13</sup>C NMR spectrum of PS-I, there were present two series of the signals belonging to the *O*-acetylated and nonacetylated sugar unit, the chemical shifts for the latter series being similar to those for the corresponding signals in the spectrum of PS-II (Table 1). The most significant displacements caused by *O*-acetylation were observed for C-5 and C-6 of GlcN (from 77.0 and 62.5 ppm to 74.8 and 64.8 ppm, respectively) and were indicative [9] of the presence of the *O*-acetyl group at position 6 of this monosaccharide residue. As judged by the relative intensities of the signals of the two series in the spectrum of PS-I, ca. 70% of the total of the GlcN residues are *O*-acetylated.

On the basis of these data, it was concluded that the O-specific polysaccharide of S. arizonae O21 (Arizona 22) has the following structure:

→ 3)-α-L-Fuc pN-(1 → 3)-β-D-Glc pNAc-(1 → 7)-α-Neu p5Ac-(2 →
$$\begin{array}{c|c}
2 & 6 \\
\text{CH}_{3}\text{C} = \text{NH} & \sim 70\% & \text{OAc}
\end{array}$$
PS-I

This O-antigen is structurally related to the O-antigen of S. arizonae O61 [6], which also has a trisaccharide repeating unit that contains L-FucN carrying an

<sup>&</sup>lt;sup>a</sup> The data for the predominant β anomer. <sup>b</sup> H-3a. <sup>c</sup> H-3e.

N-acetimidoyl group and D-GlcNAc, in common with the O-antigen of S. arizonae O21, and a higher sialic acid-like sugar, namely 7-acetamido-3,5,7,9-tetradeoxy-5-[(R)-3-hydroxybutyramido]-D-glycero-L-galacto-nonulosonic acid.

# 3. Experimental

General methods.—<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were run on a Bruker AM-360 (for oligosaccharides) or Bruker AM-300 (for polysaccharides) spectrometer in  $D_2O$  at 20 or 60°C, respectively, using acetone as an internal standard ( $\delta_H$  2.225 ppm,  $\delta_C$  31.45 ppm). GLC, gel-permeation chromatography, anion-exchange chromatography, and HPLC were carried out as described [6].

Bacterial strain, growth, and isolation of lipopolysaccharide and O-specific polysaccharide.—The strain 40027 of S. arizonae O21:z<sub>29</sub>:- (Arizona 22:16, 17, 18:-; Sol. 16 — NCTC 7347 — NCTC 1967, P.R. Edwards, Lexington, Kentucky, USA) was obtained from the Hungarian National Collection of Medical Bacteria (National Institute of Hygiene, Budapest). The bacterium was cultivated on a solid medium at 37°C as described [10,11], and the cells were dried with acetone and extracted with aq 45% phenol [3]. The lipopolysaccharide obtained was degraded with aq 2% AcOH at 100°C for 1.5 h and the O-specific polysaccharide (PS-I) was isolated as described previously [12].

Sugar analysis.—The samples were hydrolysed with 2 M CF<sub>3</sub>CO<sub>2</sub>H at 120°C for 3 h, and the hydrolysates were evaporated in vacuo and converted conventionally into alditol acetates. For identification of neuraminic acid, the samples were methanolysed (0.5 M HCl-MeOH, 100°C, 3 h) and acetylated. Both types of the derivatives were analysed by GLC. Absolute configurations of the monosaccharides, including neuraminic acid, were determined by GLC according to the published [13,14] and modified [15] methods using (R)- and (S)-2-butanol.

O-Deacetylation.—PS-I (60 mg) was kept in 0.1 M HCl-MeOH (5 mL, 20°C, 16 h), the solution was evaporated, and PS-II (52 mg) was isolated by gel-permeation chromatography on Sephadex G-50 in pyridine-acetate buffer (pH 4.5).

Solvolysis with anhydrous HF.—PS-I (50 mg) was treated with anhyd HF (ca. 3 mL) under stirring at 20°C for 2 h, HF was removed in vacuo over solid NaOH, the products were separated by gel-permeation chromatography on TSK HW-40 (S) in water, and the disaccharide 1 (11 mg) was isolated from the oligosaccharide fraction by HPLC on Nucleosil C18 in 0.05% CF<sub>3</sub>CO<sub>2</sub>H.

Solvolysis, under the same conditions, of N-acetylneuraminic acid or methyl 5-acetamido-3,5-dideoxy-D-glycero- $\alpha$ -D-galacto-nonulopyranosidonic acid led to N-acetyl-2,7-anhydroneuraminic acid [2] as the only product.

Partial methanolysis.—PS-I (40 mg) was heated with 0.5 M HCl-MeOH (5 mL, 60°C, 1 h), the solution was evaporated, and the bioside 2 (7 mg) and methyl glycosides of monosaccharides were isolated by HPLC as described above.

Partial hydrolysis.—The lipopolysaccharide (200 mg) was hydrolysed with 0.1 M CF<sub>3</sub>CO<sub>2</sub>H (8 mL, 100°C, 3 h), the precipitate of lipid was removed by centrifugation, the supernatant solution was evaporated, the products were separated by

HPLC as described above, and the disaccharide 3 (6 mg) and the trisaccharide 4 (17 mg) were additionally purified by gel-permeation chromatography on TSK HW-40 (S).

## References

- [1] E.V. Vinogradov, Y.A. Knirel, N.K. Kochetkov, S. Schlect, and H. Mayer, Carbohydr. Res., 253 (1994) 101-110.
- [2] E.V. Vinogradov, N.A. Paramonov, Y.A. Knirel, A.S. Shashkov, and N.K. Kochetkov, Carbohydr. Res., 242 (1993) C11-C14.
- [3] O. Westphal and K. Jann, Methods Carbohydr. Chem., 5 (1965) 83-89.
- [4] Y.A. Knirel, N.A. Paramonov, E.V. Vinogradov, A.S. Shashkov, B.A. Dmitriev, N.K. Kochetkov, E.V. Kholodkova, and E.S. Stanislavsky, Eur. J. Biochem., 167 (1987) 549-561.
- [5] J.F.G. Vliegenthart, L. Dorland, H. van Halbeek, and J. Haverkamp, in R. Schauer (Ed.), Sialic acids: Chemistry, Metabolism, and Function, Springer Verlag, Wien, 1982, pp. 127-172.
- [6] E.V. Vinogradov, A.S. Shashkov, Y.A. Knirel, N.K. Kochetkov, J. Dabrowski, H. Grosskurth, E.S. Stanislavsky, and E.V. Kholodkova, *Carbohydr. Res.*, 231 (1992) 1–11.
- [7] V.L. L'vov, S.V. Guryanova, A.V. Rodionov, B.A. Dmitriev, A.S. Shashkov, A.V. Ignatenko, R.P. Gorshkova, and Y.S. Ovodov, *Bioorg. Khim.*, 16 (1990) 379-389.
- [8] G.M. Lipkind, A.S. Shashkov, Y.A. Knirel, E.V. Vinogradov, and N.K. Kochetkov, Carbohydr. Res., 175 (1988) 59-75.
- [9] P.-E. Jansson, L. Kenne, and E. Schweda, J. Chem. Soc., Perkin Trans. 2, (1987) 377-383.
- [10] B.A. Dmitriev, Y.A. Knirel, N.A. Kocharova, N.K. Kochetkov, E.S. Stanislavsky, and G.M. Mashilova, Eur. J. Biochem., 106 (1980) 643~651.
- [11] E.S. Stanislavsky, L.S. Edvabnaya, O.A. Bandman, V.F. Boolk, M.I. Zhvanetskaya, and A.K. Vargina, Vaccine, 7 (1989) 562-566.
- [12] Y.A. Knirel, E.V. Vinogradov, A.S. Shashkov, B.A. Dmitriev, N.K. Kochetkov, E.S. Stanislavsky, and G.M. Mashilova, Eur. J. Biochem., 163 (1987) 627-637.
- [13] K. Leontein, B. Lindberg, and J. Lönngren, Carbohydr. Res., 62 (1978) 359-362.
- [14] G.J. Gerwig, J.P. Kamerling, and J.F.G. Vliegenthart, Carbohydr. Res., 77 (1979) 1-7.
- [15] E.V. Vinogradov, O. Holst, J.E. Thomas-Oates, K.W. Broady, and H. Brade, Eur. J. Biochem., 210 (1992) 491-498.